Old and new generalizations of line graphs

نویسنده

  • Jay Bagga
چکیده

The line graph L(G) of a graph G is defined to have as its vertices the edges of G, with two being adjacent if the corresponding edges share a vertex in G. Line graphs have a rich history. The name line graph was first used by Harary and Norman in 1960. But line graphs were the subject of investigation as far back as 1932 in a paper by H. Whitney in which he showed that for connected graphs, edgeisomorphism implies isomorphism except for K3 and K1,3. The line graph transformation is one of the most widely studied of all graph transformations. The concept has been rediscovered several times, with different names such as derived graph, interchange graph, and edge-to-vertex dual. Line graphs can also be considered as intersection graphs. Several variations and generalizations of line graphs have been proposed and studied. These include the concepts of total graphs, path graphs and others. More recent generalizations include the concept of super line graphs. In a series of several papers, Bagga, Beineke and Varma investigated many properties of super line graphs. Recent work also includes the study of algebraic properties of super line graphs by Bagga and Ferrero. In this presentation we describe these and some other recent generalizations such as triangle graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On equistable, split, CIS, and related classes of graphs

We consider several graphs classes defined in terms of conditions on cliques and stable sets, including CIS, split, equistable, and other related classes. We pursue a systematic study of the relations between them. As part of this study, we introduce two generalizations of CIS graphs, obtain a new characterization of split graphs, and a characterization of CIS line graphs.

متن کامل

D-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs

The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...

متن کامل

The spectrum of the hyper-star graphs and their line graphs

Let n 1 be an integer. The hypercube Qn is the graph whose vertex set isf0;1gn, where two n-tuples are adjacent if they differ in precisely one coordinate. This graph has many applications in Computer sciences and other area of sciences. Inthe graph Qn, the layer Lk is the set of vertices with exactly k 1’s, namely, vertices ofweight k, 1 k n. The hyper-star graph B(n;k) is...

متن کامل

Zagreb Indices and Coindices of Total Graph, Semi-Total Point Graph and Semi-Total Line Graph of Subdivision Graphs

Expressions for the Zagreb indices and coindices of the total graph, semi-total point graph and of semi-total line graph of subdivision graphs in terms of the parameters of the parent graph are obtained, thus generalizing earlier existing results.

متن کامل

ANNIHILATING SUBMODULE GRAPHS FOR MODULES OVER COMMUTATIVE RINGS

In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004